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The difficulty of characterizing and observing valid software behavior during testing can 
be very difficult in flight systems. To address this issue, we evaluated several approaches to 
increasing test observability on the Shuttle Abort Flight Management (SAFM) system.  To 
increase test observability, we added probes into the running system to evaluate the internal 
state and analyze test data. To minimize the impact of the instrumentation and reduce 
manual effort, we used Aspect-Oriented Programming (AOP) tools to instrument the source 
code. We developed and elicited a spectrum of properties, from generic to application 
specific properties, to be monitored via the instrumentation. To evaluate additional 
approaches, SAFM was ported to Linux, enabling the use of gcov for measuring test 
coverage, Valgrind for looking for memory usage errors, and libraries for finding non-
normal floating point values. An in-house C++ source code scanning tool was also used to 
identify violations of SAFM coding standards, and other potentially problematic C++ 
constructs. Using these approaches with the existing test data sets, we were able to verify 
several important properties, confirm several problems and identify some previously 
unidentified issues. 

I. Introduction 
ERIFCATION and validation of human-rated software systems is a challenging and expensive task. While 
there are many methods and tools which can help select and generate test cases, the problem of characterizing 

and observing valid program behavior is often underestimated.  
 The standard approach to addressing this issue is to perform verification from the inside-out: starting with unit 
testing and ending with end-to-end system testing. This approach provides increased visibility into subsystems, but 
introduces issues as to whether the unit test scenarios correspond to well to the scenarios the unit will experience 
when integrated. Restricting unit tests to only expected scenarios often requires extensive modeling of the 
environment around the unit. While testing the unit on a wider range of inputs than anticipated can increase 
robustness, most often there are simply too many input combinations to test without some restriction on the expected 
environment. 
 In an effort to address this issue, we evaluated several approaches to increasing test observability. The evaluation 
was done as a “shadow” verification effort for the Shuttle Abort Flight Management (SAFM) system, a safety 
critical application being developed using C++. SAFM evaluates the potential abort options for the Space Shuttle 
under various contingencies and provides abort recommendations to the crew. Because this was a shadow effort, it 
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was very important to not interfere with the main-stream development activities. This led to the requirement that our 
test instrumentation methods should not require manual modification of the code – specifically in the case where the 
instrumentation would need to be inserted into new releases. 
 Adding instrumentation to an application can be problematic because the instrumentation may change the way 
the software functions, resulting in invalid test results. The goal of this experiment was to evaluate different 
instrumentation approaches and platforms and see whether they could identify problems without interfering with the 
software – that is, if they could detect and isolate errors which were also errors in the non-instrumented system. This 
would indicate that the tools would be effective as initial test platforms to help flesh out problems before proceeding 
to more high-fidelity testing. We used an Aspect-Oriented Programming (AOP)1 approach to help automate the 
insertion of checks into the code. 
 To enable intermediate test results checking, we needed a set of properties of the intermediate states of the 
software that should be satisfied by any test. We used a spectrum of properties, from a few generic properties such 
as "avoid division by zero," to several application specific properties, such as "the size of the backstep should 
always be between -0.01 and -2.0." The application specific properties were elicited from the development and 
testing organization using an iterative process. 
 In addition to inserting checks with AOP, we also applied the following tools to check some of these properties: 

• gcov for measuring test coverage 
• Valgrind for detecting heap and uninitialized memory errors 
• Linux libraries for finding non-normal floating point values 
• Dingo, a C++ source code scanning tool, for identifying potential coding issues 

 In the next section, we provide a brief overview of SAFM and the process used during development and testing.  
We then discuss how we identified additional properties to test and extended the test environment to check these 
properties.  Finally, we provide technical descriptions of the tools that were used during this effort and provide a 
summary of the results. 

II. Overview of the Shuttle Abort Flight Management system 

A. Shuttle Abort Flight Management 
 To perform shuttle abort flight management, SAFM evaluates potential abort options for the Space Shuttle 
during various contingencies and provides abort recommendations to the crew. SAFM provides abort performance 
assessment during the powered flight phase (while the space shuttle main engine is firing) and landing site 
evaluation and monitoring during the glided flight phases. SAFM was developed as part of the Space Shuttle 
Cockpit Avionics Upgrade by NASA Johnson Space Center, United Space Alliance and General Dynamics Decision 
Systems.   

B. SAFM Development and Testing 
 SAFM was developed using C++ and consists of 38K SLOC. It was developed over the course of 4 years and 
went through 11 incremental releases. Testing was done at the unit level and the application level using test data 
from generated with a space shuttle simulator. Application test results were evaluated against a SAFM requirements 
simulator developed by General Dynamics. The SAFM requirements simulator provided both input-output results as 
well as an assessment of requirements coverage achieved by a test. The requirements simulator was described as 
being very valuable for evaluating potential requirements changes before adding them to the Software Requirements 
Specification. 
 SAFM maintains and evaluates a set of viable hypothetical abort scenarios. Each scenario maintains a set of 
scenario-specific data, resulting in a relatively large internal state relative to its inputs and outputs. This presents a 
challenge to testing, because there is limited visibility to the scenario data at the application interface.  Must of our 
effort was aimed at increasing visibility into the SAFM internal state to improve test validation. 
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III. Identifying critical requirements and design properties.  

Adding instrumentation to an application is only adds value if you can identify interesting properties of the internal 
state of the system. Intermediate results are low-level derived requirements that usually depend on architecture and 
implementation choices. There is no well-defined accepted process for eliciting these properties. We used a 
combination of approaches in an attempt to be through and to understand which approaches were most useful. We 
classified the properties in terms of there general applicability versus there specific relevance to SAFM. 

A. General Properties 

The most general properties are low-level properties related to programming language and platform runtime issues 
such as memory leaks and array bounds overflows. These issues, while still very problematic in practice, are 
reasonably well known2. We focused most of our time on identifying application specific properties. 

B. Application Specific Properties 

To elicit application specific properties, we hosted SAFM test lead at ARC for a week to discuss the SAFM 
architecture and to identify instrumentation points where critical intermediate values could be checked. The 
discussions were focused on three topics: 

• requirements which the test lead felt were relatively under-tested, 

• specific problems that had occurred during development which had proven difficult to detect with standard 
testing, and 

• open-ended discussions about SAFM requirements guided by the questions “how can you tell that is 
working” and “what happens if that is broken.” 

 It was during these discussions that the general issue of SAFM’s large internal state, relative to its outputs, and 
the effect this has on testability was identified.  The internal state was large in two ways.  First, there were a large 
number of internal variables and second, there were many possible combinations of active scenarios that could be 
sequenced.  To define properties over variables, we identified relationships between the internal variables that could 
be monitored and checked.  These relationships could either be “invariant” meaning the always hold, or the might 
only hold at specific locations or during certain situations. Defining properties of valid sequences of scenarios was 
similar, except that it was not always possible to represent the property as a constraint between two variables at the 
same time or place. In these cases we need to define a “temporal” property, which relates variables across different 
states of the program execution3.  

Some example application specific properties were: 
1. All dynamic memory (de)allocation must happen during initialization (shutdown) 
2. No scenario uses data from a parent scenario that was not “applicable” or “valid” 
3. Only one abort type (Return To Launch Site, Trans-Atlantic and Abort To Orbit) is declared at a time 
4. Only one “backstep” per “flyout” should be executed 
5. “Flyouts” must run in order  
6. Velocity lookup with one engine out is always less than or equal to that with two engines out 

IV. Extending the SAFM test infrastructure 

A. SAFM build & test environment at ARC  
To perform a shadow verification effort, the SAFM application test environment was dublicated at NASA Ames 

Research Center. This included the SAFM test harnesses, requirements simulator, and test data used by the 
development and test team, as well as the source code. In addition, some minor changes were made to ported the 
system to enable the subsystem test driver to run under Unix (e.g. Linux and Mac OS) and added additional testing 
flexibility. In this environment we could apply several additional testing tools that were not being used by the 
development team: Memcheck (array bounds and memory leaks), gcov (statement coverage and counts) and 
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Kcachegrind (performance measurements). All of the testing experiments made use of the test data used by the 
development and test team that was generated by a space shuttle simulator at JSC. 

B. Gathering data on existing test coverage 
 
We used test adequacy coverage metrics as one method for measuring the impact of our testing extensions.  To 

provide a baseline for comparison, we measured the current coverage of source code by the test suite.  The test suite 
was developed to provide coverage of the requirements, not the code, so it was not expected to provide 100% 
coverage.  To measure test coverage we used gcov, a test coverage program that comes with the GNU CC compiler. 
The current test suite was reported to cover 83% of the lines source code. 

V. Inserting instrumentation for property checking 

A. Developing checks for properties  
For each property, we had to determine exactly what relationship between program variables should be checked 

and when/where during execution the checks could be placed. In general, it would be beneficial to design an 
application with explicit checkpoints where the system state is expected to be stable4. For SAFM, identifying these 
locations required the expertise of the testing team. Examples of how properties were mapped to application 
variables are shown in the following table: 
 
Property 
 

Check 

All dynamic memory allocations happen during startup 
and shutdown 

Overloaded operator new and delete.  Used control flags 
to ensure they weren’t called at the wrong time 
 

No scenario uses data from a parent scenario that was 
not applicable or valid 
 

Insert checks to applicability and valid flags of parent 
scenarios before scenario execution 

Only one abort type (Return To Launch Site, Trans-
Atlantic and Abort To Orbit) is declared at a time 
 

RTLS and TAL abort flags in powered flight scenarios 
must be mutually exclusive. RTLS, TAL and ATO abort 
flags must be musually exclusive across the whole of 
SAFM. 

Only one “backstep” per “flyout” should be executed 
 

Instrumented flyout loop to check counter  

“Flyouts” must run in order  
 

Inserted check based on a table from the SRS indicating 
acceptable ordering of scenarios. 

Velocity lookup with 1 engine out is always less than or 
equal to that with 2 engines out 

Inserted a value comparison check in the table lookup 
function  

 
All of these examples properties passed testing with violations when inserted into SAFM Version 9.  However, 

when migrating to Version 11, the “flyouts must run in order” property began reporting violations. Analysis 
revealed that the cause was the addition of a new requirement which included a situation where the expected order 
of the flyouts was altered. 

B. Inserting property checks 
 The primary instrumentation approach we used was to insert additional checks on internal data using Aspect-
Oriented Programming (AOP) tools1. AOP is a general software development approach which enable functions to be 
inserted into specified location in a program. This enables cross-cutting functionality (a.k.a. aspects) to be managed 
separately and then automatically distributed throughout the program text. By maintaining the instrumentation as 
aspects, we are able to separately maintain the test code and easily insert it into new SAFM releases. 

AOP eased this task and made it less error-prone and time-consuming by providing several practical advantages.  
First, because the aspect code resides in its own set of source code files, it was not necessary to modify the SAFM 
source code to support testing.  For example, there were several situations where the existing test harness required 
the re-insertion of test code or modification to integrate with the code for the test environment. Being able to 
automatically "weave in" the instrumentation makes the testing infrastructure code much easier to maintain, 
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especially across successive code revisions. Also, having the instrumentation defined in aspect files allowed us to 
easily switch between the instrumented and un-instrumented code or to select arbitrary groups of instrumentations to 
be inserted. This provides added ease and flexibility in supporting a variety of test harness configurations during 
testing.  In some cases, the instrumentation for a single property would cut across several source files. In this case 
the instrumentation qualifies as a cross-cutting concern of the type that the AOP tools were designed to handle. 

An additional benefit of using AOP tools was that it provided visibility into the state of objects in the system. 
One challenge of constructing a test environment for object-oriented software is that the programming language 
features which promote good design by hiding internal state of objects from other objects in the system can limit 
what the test harness objects can see. One obvious solution to this is to integrate the test code into the objects so 
there is greater visibility. However, the result is that the test code is spread throughout the system and is more 
difficult to maintain and remove if necessary. Another approach is to use language features, such as "friends" in 
C++, which bypass the features promoting good design. While it might be argued that good design is not as critical 
for test code as it is for application code, completely disabling the visibility restrictions results in an unmanaged 
environment, an is likely to increase the time, cost and reliability of testing. 

VI. Additional Verification Tool Evaluation 

A. Linux 
One of the general properties that was identified was to avoid division by zero. The SAFM test platform used for 

development was configured to adhere to the IEEE Floating Point Standard which specifies that a divide by zero 
does not cause a runtime exception, but returns the special value NaN (not a number). This makes it difficult to 
identify divide by zero situations that occur when calculating values for internal variables. Under Linux, we 
incorporated the trapfpe.c library to cause floating point libraries to cause a program trap. This enabled us to detect 
a divide by zero in one of the test cases that was not being detected on the test platform. We also detected an 
overflow problem in superfluous test data which had no impact on testing. 

B. Valgrind 
Valgrind4 is an open-source program monitoring framework which operates on x86 binaries compiled for Linux. 

The basic framework includes a suite of tools providing defect detection and profiling capabilities. Valgrind works 
by inserting instrumentation into the binary and then executing it on a simulated CPU (a virtual machine) which 
interpret the instrumentation.  

Memcheck is a Valgrind tool which targets memory management errors such as memory leaks, use of 
uninitialized memory and improper use of standard library memory management functions.  To accomplish this, 
Memcheck instruments all reads and writes of memory.  This instrumentation results in a slow down of about 20-
40x. Execution of the test suite under Memcheck did not reveal any memory leaks in the application.  We did 
identify one memory leak in the test driver when it was used to drive multiple runs of the SAFM application without 
allowing normal application termination. 

C. Automated code inspections 
Automated code inspection technology involves the use of tools to check project-defined coding standards. The 

primary roles of coding standards are to establish consistent coding conventions across a project to improve 
readability and maintainability of the code and to restrict the use of specific coding patterns which may be error 
prone or difficult to maintain. There are several sets of industry defined coding standards as well as several popular 
books providing coding conventions5,6 

Coding standards checking is done statically - at compile time, before program execution – and is therefore not a 
program monitoring technology. However, the objective of many of the coding rules is to avoid program constructs 
and patterns which may cause errors that would be very difficult to detect or isolate at run time. For example, the 
object oriented features of C++ instruct the compiler to introduce various standard functions when they are not 
explicitly defined. If you were to (perhaps unintentionally) write code which requires one of these standard methods 
which is undefined, the compiler will happily generate this code for you; it will not complain that this function is not 
defined. To prevent this scenario, a commonly recommended coding convention is to provide definitions for the 
standard functions (single argument ‘copy’ constructors, address-of operators, etc...) but make them invisible outside 
the object class. If this is done, the compiler will complain if one of these methods is needed.    

As part of the Cockpit Avionics Upgrade, SAFM was required to adhere to the CAU coding standards defined by 
United Space Alliance. These standards stated a number of rules ranging from naming conventions to conventions 
on ensuring some of the more sinister features of C++ are not accidentally invoked. One of the most subtle issues 
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that we found fell into the second category. Specifically, the coding standards required the “address of” operator (&) 
to be declared “private” in class definitions to prevent objects of other classes from obtaining the memory address of 
an object. Our standards checker found several places in the CAU system software where this operator is declared 
with an extra parameter, which makes it the bitwise-and operator instead for the address-of operator. Therefore, the 
desired restriction on taking the address of the object was not achieved.   

VII. Summary and Conclusion 
Using these approaches, we were able to verify several important properties and identify some issues that had 

not been identified by the engineering team. We were also able to provide additional data to confirm several 
problems found during standard testing. All of this was done using the same input test data that had already been 
used in formal testing; the issues had not been noticed because they were either not visible in the output data or were 
difficult to isolate and identify. Thus, increased observability of test execution was able to provided significant 
additional error-detection capabilities with existing test data. We are continuing to work with the SAFM team to 
make these tool and techniques more cost effective so that they can be used in next-generation autonomous flight 
system. 
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